Report Date:
Country: CUBA
Housing Type:
Housing Sub-Type:
Author(s): Grisel Morejon Blanco, Kenia Leyva Chang, Dario Candebat Sanchez, Zulima Rivera Alvarez, Yelena Berenguer Heredia, Madelin Villalon Semanat, Dominik H. Lang, Abdelghani Meslem
Last Updated: 01/26/2016
Regions Where Found: Santiago de Cuba
Summary: Precast RC frames in one direction with RC walls in one or two directions. Infill walls are made of hollow concrete blocks or rectangular fired clay bricks
Length of time practiced: 25-60 years
Still Practiced: Yes
In practice as of: G, GP: ~1970 -1990SAE: ~1990
Building Occupancy: Other
Typical number of stories: 1-5
Terrain-Flat:
Terrain-Sloped:
Comments:
Plan Shape: Rectangular, solidL-shapeU- or C-shape
Additional comments on plan shape:
Typical plan length (meters):
Typical plan width (meters):
Typical story height (meters):
Type of Structural System: Structural Concrete: Precast Concrete: Moment frame
Additional comments on structural system: Gravity: Precast RC slabs, transferring the gravity loads to the beams and columns and finally to the footingsLateral: The longitudinal direction comprises of squared (0.5 x 0.5 - 0.6 x 0.6 m) column pedestals which form a stiff connection towards individual footing plates with dimensions of ~2 x 2 m; the footing plates provide lateral stiffness by passive soil pressure and friction; sometimes the first story has column dimensions 0.35 x 0.60 m while the upper stories have column dimensions of 0.3 x 0.4 m.
Gravity load-bearing & lateral load-resisting systems: Precast dual system; the structural system comprises of rectangular columns, T-beams and floor slabs with ribs and shear walls
Typical wall densities in direction 1: >20%
Typical wall densities in direction 2: >20%
Additional comments on typical wall densities:
Wall Openings:
Is it typical for buildings of this type to have common walls with adjacent buildings?:
Modifications of buildings:
Type of Foundation: Other Foundation
Additional comments on foundation: The foundation system consists of spread footings with pedestals.
Type of Floor System: Precast concrete floor without reinforced concrete topping
Additional comments on floor system: Prefabricated floor slab elements are supported by concrete beams; slab continuity is established by cast-in-situ concrete with horizontal lap-spliced reinforcement in the upper layer.
Type of Roof System: Precast concrete roof without reinforced concrete topping
Additional comments on roof system: Prefabricated floor slab elements are supported by concrete beams; slab continuity is established by cast-in-situ concrete with horizontal lap-spliced reinforcement in the upper layer.
Additional comments section 2:
Structural Element | Building Material (s) | Comment (s) |
---|---|---|
Wall/Frame | ||
Foundations | ||
Floors | ||
Roof | ||
Other |
Who is involved with the design process?: Owner
Roles of those involved in the design process:
Expertise of those involved in the design process:
Who typically builds this construction type?: Other
Roles of those involved in the building process:
Expertise of those involved in building process:
Construction process and phasing:
Construction issues
Is this construction type address by codes/standards?: Yes
Applicable codes or standards: NC 53-114:84
Process for building code enforcement:
Are building permits required?:
Is this typically informal construction?:
Is this construction typically authorized as per development control rules?:
Additional comments on building permits and development control rules:
Typical problems associated with this type of construction:
Who typically maintains buildings of this type?: Other
Additional comments on maintenance and building condition:
Unit construction cost: 12 CUC/m2
Labor requirements:
Additional comments section 3:
Year | Earthquake Epicenter | Richter Magnitude | Maximum Intensity |
---|
Damage patterns observed in past earthquakes for this construction type: Some damage was observed during a moderate earthquake; the main damage patterns consisted of fine cracks in infill walls, mainly starting from corners of openings and vertical fine cracks at wall corners; fine cracks in the seismic structural joints.
The main reference publication used in developing the statements used in this table is FEMA 310 Handbook for the Seismic Evaluation of Buildings-A Pre-standard, Federal Emergency Management Agency, Washington, D.C., 1998.
The total width of door and window openings in a wall is: For brick masonry construction in cement mortar : less than ½ of the distance between the adjacent cross walls; For adobe masonry, stone masonry and brick masonry in mud mortar: less than 1/3 of the distance between the adjacent cross walls; For precast concrete wall structures: less than 3/4 of the length of a perimeter wall.
Structural/Architectural Feature | Statement | Seismic Resistance |
---|
Vertical irregularities typically found in this construction type: Other
Horizontal irregularities typically found in this construction type: Other
Seismic deficiency in walls: The system has a non-ductile behavior; the joint column-column does not guarantee the correct transmission of seismic loads; the joint exhibits weak column-strong beam behavior; the GP variant (with open ground floor) is more vulnerable due to the presence of a soft story; the shear walls have major window openings that are susceptible for failure, considering their poor connections with frame members; in the transverse direction: concrete shear walls with thickness 0.1 m distributed at given axes, these walls are vulnerable for failure to earthquake.
Seismic deficiency in foundation: The way the foundations are built does not allow the construction of beams that meet the requirements for a seismic design.
For information about how seismic vulnerability ratings were selected see the Seismic Vulnerability Guidelines
High vulnerabilty | Medium vulnerability | Low vulnerability | ||||
---|---|---|---|---|---|---|
A | B | C | D | E | F | |
Seismic vulnerability class | o |
Additional comments section 5: Moderate to High vulnerability due to low ductility
Structural Deficiency | Seismic Strengthening |
---|
Brzev, S., Scawthorn, C., Charleson, A.W., and Jaiswal, K. (2012). GEM basic building taxonomy, Report produced in the context of the GEM Ontology and Taxonomy Global Component project, 45 pp.
Cuban National Bureau of Standards (2013). Norma Cubana NC46: 2013, Construcciones sismoresistentes - Requisitos basicos para el diseno y construccon, 1. Edicion, January 2013, Officina Nacional de Normalizacion (NC), Habana, Cuba.
Jaiswal, K.S., and Wald, D.J. (2008). Creating a global building inventory for earthquake loss assessment and risk management, U.S. Geological Survey Open-file report 2008-1160, 106 pp.
Lang D.H., Meslem, A., Lindholm C., Blanco, G.M., Chang, K.L., Sanchez, D.C., and Alvarez, Z.R. (2015). Earthquake Loss Evaluation (ELE) for the City of Santiago de Cuba (Cuba), Report no. 15-015, Kjeller - Santiago de Cuba, October 2015, 90pp.
Medina A., Escobar E., Ortiz G. Ramirez M., Duiaz L., Mondelo F., Montejo N., Rodriguez H., Guevara T. and Acosta J. (1999). Reconocimiento geologo-geofisico de la cuenca de Santiago de Cuba, con fines de Riesgo Sismico. Empresa Geominera de Oriente, Santiago de Cuba. 32 pp.
Mendez I., Ortiz G., Aguller M., Rodriguez E., Llull E., Guevara T., Lopez T., Guilart M., Mustelier M., Gentoiu M. and Lay M. (2001). Base de datos digital de los levantamientos regionales de Cuba Oriental. Empresa Geologo-Minera de Oriente (E.G.M.O.) y Oficina Nacional de Recursos Minerales (O.N.R.M).
Morejon Blanco, G., Leyva Chang, K., Candebat Sanchez, D., Rivera Alvarez, Z., Berenguer Heredia, Y., Villalon Semanat, M., Lang, D.H., and Meslem, A. (2015). Building Classification Scheme for the City of Santiago de Cuba (Cuba), Report no. 15-010, Kjeller - Santiago de Cuba, August 2015, 30 pp.
SNIP (1963). Construction in Seismic Regions: Norms of Designing, SNIP II-A. 12-62, Moscow, 1963.
Name | Title | Affiliation | Location | |
---|---|---|---|---|
Grisel Morejon Blanco | Vice Director | Centro Nacional de Investigaciones Sismologicas (CENAIS) | Santiago de Cuba, Cuba | |
Kenia Leyva Chang | Specialist for Science, Technology and Environment | Centro Nacional de Investigaciones Sismologicas (CENAIS) | Santiago de Cuba, Cuba | |
Dario Candebat Sanchez | Investigador Agregado | Centro Nacional de Investigaciones Sismologicas (CENAIS) | Santiago de Cuba, Cuba | |
Zulima Rivera Alvarez | Assistant Researcher | Centro Nacional de Investigaciones Sismologicas (CENAIS) | Santiago de Cuba, Cuba | |
Yelena Berenguer Heredia | Aspirante a Investigador | Centro Nacional de Investigaciones Sismologicas (CENAIS) | Santiago de Cuba, Cuba | |
Madelin Villalon Semanat | Investigador Agregado | Centro Nacional de Investigaciones Sismologicas (CENAIS) | Santiago de Cuba, Cuba | |
Dominik H. Lang | Head of Department, Earthquake Hazard and Risk | NORSAR | Kjeller, Norway | |
Abdelghani Meslem | Structural and Earthquake Engineer | NORSAR | Kjeller, Norway |
Name | Title | Affiliation | Location | |
---|---|---|---|---|
Jaiswal, Kishor | Research Structural Engineer | U.S. Geological Survey (contracted through Synergetics Incorporated) | Golden CO, USA | kjaiswal@usgs.gov |